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RAPIDS
End-to-End Accelerated GPU Data Science
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cuxfilter <> pyViz
Visualization

Dask
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Data Processing Evolution
Faster data access, less data movement

25-100x 
Improvement

Less code
Language flexible

Primarily In-Memory
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5-10x Improvement
More code

Language rigid
Substantially on GPU

Traditional GPU Processing

Hadoop Processing, Reading from disk

Spark In-Memory Processing
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APP A

Data Movement and TransformationData Movement and Transformation
The bane of productivity and performance
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Data Movement and TransformationData Movement and Transformation
What if we could keep data on the GPU?

APP A

APP B

Copy & Convert

Copy & Convert

Copy & Convert

Read Data

Load Data

CPU

APP A GPU 
Data

APP B
GPU 
Data

APP B

APP A

GPUCopy & Convert
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Learning from Apache Arrow

From Apache Arrow Home Page - https://arrow.apache.org/

● Each system has its own internal memory format
● 70-80% computation wasted on serialization and deserialization
● Similar functionality implemented in multiple projects

● All systems utilize the same memory format
● No overhead for cross-system communication
● Projects can share functionality (eg, Parquet-to-Arrow 

reader)
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Data Processing Evolution
Faster data access, less data movement

25-100x 
Improvement

Less code
Language flexible

Primarily In-Memory

HDFS 
Read

HDFS 
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Read ETL ML
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5-10x Improvement
More code

Language rigid
Substantially on GPU

50-100x Improvement
Same code

Language flexible
Primarily on GPU

RAPIDS

Traditional GPU Processing

Hadoop Processing, Reading from disk

Spark In-Memory Processing

Query
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Faster Speeds, Real-World Benefits
cuIO/cuDF – 
Load and Data Preparation XGBoost Machine Learning

Time in seconds (shorter is better)
cuIO/cuDF (Load and Data Prep) Data Conversion XGBoost

Benchmark

200GB CSV dataset; Data prep includes 
joins, variable transformations

CPU Cluster Configuration
CPU nodes (61 GiB memory, 8 vCPUs, 
64-bit platform), Apache Spark

DGX Cluster Configuration
5x DGX-1 on InfiniBand 
network

8762

6148

3925

3221

322

213

End-to-End
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Faster Speeds, Real-World Benefits
cuIO/cuDF – 
Load and Data Preparation XGBoost Machine Learning

Time in seconds (shorter is better)
cuIO/cuDF (Load and Data Prep) Data Conversion XGBoost

Benchmark

200GB CSV dataset; Data prep includes 
joins, variable transformations

CPU Cluster Configuration
CPU nodes (61 GiB memory, 8 vCPUs, 
64-bit platform), Apache Spark

DGX Cluster Configuration
5x DGX-1 on InfiniBand 
network

End-to-End

Improving Over Time
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Speed, Ease of Use, and Iteration
The Way to Win at Data Science
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RAPIDS Core
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Pandas
Analytics

CPU Memory

Data Preparation VisualizationModel Training

Scikit-Learn
Machine Learning

NetworkX
Graph Analytics

PyTorch Chainer 
MxNet

Deep Learning

Matplotlib/Plotly
Visualization

Open Source Data Science Ecosystem
Familiar Python APIs

Dask
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cuML
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cuGraph
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RAPIDS
End-to-End Accelerated GPU Data Science
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Dask
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cuDF cuIO
Analytics

        GPU Memory

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer 
MxNet

Deep Learning

cuxfilter <> pyViz
Visualization

RAPIDS
Scaling RAPIDS with Dask

Dask
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Why Dask?

• Easy Migration: Built on top of NumPy, Pandas 
Scikit-Learn, etc.

• Easy Training: With the same APIs
• Trusted: With the same developer community

PyData Native

• Easy to install and use on a laptop
• Scales out to thousand-node clusters

Easy Scalability

• Most common parallelism framework today in 
the PyData and SciPy community

Popular

• HPC: SLURM, PBS, LSF, SGE
• Cloud: Kubernetes
• Hadoop/Spark: Yarn

Deployable
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Why OpenUCX?

• TCP sockets are slow!

• UCX provides uniform access to transports (TCP, 
InfiniBand, shared memory, NVLink)

• Alpha Python bindings for UCX (ucx-py)

• Will provide best communication performance, to Dask 
based on available hardware on nodes/cluster

Bringing hardware accelerated communications to Dask

conda install -c conda-forge -c rapidsai \
  cudatoolkit=<CUDA version> ucx-proc=*=gpu ucx ucx-py 
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cuDF v0.13, UCX-PY 0.13

Running on NVIDIA DGX-1 (8GPUs):

GPU: NVIDIA Tesla V100 32GB
CPU: Intel(R) Xeon(R) CPU 8168
        @ 2.70GHz

Benchmark Setup:

DataFrames: Left/Right 1x int64 column key 
column, 1x int64 value columns

Merge: inner

30% of matching data balanced across each 
partition

Benchmarks: Distributed cuDF Random Merge 
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cuDF
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cuDF cuIO
Analytics

        GPU Memory

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer 
MxNet

Deep Learning

cuxfilter <> pyViz
Visualization

RAPIDS
GPU Accelerated data wrangling and feature engineering

Dask
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GPU-Accelerated ETL
The average data scientist spends 90+% of their time in ETL as opposed to training 

models
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ETL Technology Stack

Dask cuDF
cuDF

Pandas

Thrust
Cub

Jitify

Python

Cython

cuDF C++ 

CUDA Libraries

CUDA
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ETL: the Backbone of Data Science
libcuDF is…

CUDA C++ Library

● Table (dataframe) and column types and 
algorithms

● CUDA kernels for sorting, join, groupby, 
reductions, partitioning, elementwise 
operations, etc.

● Optimized GPU implementations for 
strings, timestamps, numeric types 
(more coming)

● Primitives for scalable distributed ETL

std::unique_ptr<table>
gather(table_view const& input,
       column_view const& gather_map, …)
{

// return a new table containing
    // rows from input indexed by 
    // gather_map
}
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ETL: the Backbone of Data Science
cuDF is…

Python Library

● A Python library for manipulating GPU 
DataFrames following the Pandas API

● Python interface to CUDA C++ library with 
additional functionality

● Creating GPU DataFrames from Numpy arrays, 
Pandas DataFrames, and PyArrow Tables

● JIT compilation of User-Defined Functions 
(UDFs) using Numba
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cuDF v0.13, Pandas 0.25.3

Running on NVIDIA DGX-1:

GPU: NVIDIA Tesla V100 32GB
CPU: Intel(R) Xeon(R) CPU E5-2698 v4 
        @ 2.20GHz

Benchmark Setup:

RMM Pool Allocator Enabled

DataFrames: 2x int32 columns key columns, 
3x int32 value columns

Merge: inner

GroupBy: count, sum, min, max calculated 
for each value column

Benchmarks: single-GPU Speedup vs. Pandas
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cuDF cuIO
Analytics

        GPU Memory

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer 
MxNet

Deep Learning

cuxfilter <> pyViz
Visualization

Dask

ETL: the Backbone of Data Science
cuDF is not the end of the story
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ETL: the Backbone of Data Science
String Support

•Regular Expressions
•Element-wise operations

• Split, Find, Extract, Cat, Typecasting, etc…
•String GroupBys, Joins, Sorting, etc.
•Categorical columns fully on GPU
•Native String type in libcudf C++

Current v0.13 String Support

• Further performance optimization
• JIT-compiled String UDFs

Future v0.14+ String Support
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● Follow Pandas APIs and provide >10x speedup

● CSV Reader - v0.2, CSV Writer v0.8
● Parquet Reader – v0.7, Parquet Writer v0.12
● ORC Reader – v0.7, ORC Writer v0.10
● JSON Reader - v0.8
● Avro Reader - v0.9

● GPU Direct Storage integration in progress for 
bypassing PCIe bottlenecks!

● Key is GPU-accelerating both parsing and 
decompression wherever possible

Source: Apache Crail blog: SQL Performance: Part 1 - Input File Formats

Extraction is the Cornerstone
cuDF I/O for Faster Data Loading

http://crail.incubator.apache.org/blog/2018/08/sql-p1.html
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ETL is not just DataFrames!
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        GPU Memory

Data Preparation VisualizationModel Training

RAPIDS
Building bridges into the array ecosystem

Dask

cuDF cuIO
Analytics

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer 
MxNet

Deep Learning

cuxfilter <> pyViz
Visualization
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Interoperability for the Win
DLPack and __cuda_array_interface__

mpi4py



32

ETL: Arrays and DataFrames
Dask and CUDA Python arrays

• Scales NumPy to distributed clusters
• Used in climate science, imaging, HPC analysis 

up to 100TB size
• Now seamlessly accelerated with GPUs
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Benchmark: single-GPU CuPy vs NumPy

More details: https://blog.dask.org/2019/06/27/single-gpu-cupy-benchmarks

https://blog.dask.org/2019/06/27/single-gpu-cupy-benchmarks


34

SVD Benchmark
Dask and CuPy Doing Complex Workflows
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Architecture Time

Single CPU Core 2hr 39min

Forty CPU Cores 11min 
30s

One GPU 1min 37s

Eight GPUs 19s

Petabyte Scale Analytics with Dask and CuPy

Cluster configuration: 20x GCP instances, each 
instance has:
CPU: 1 VM socket (Intel Xeon CPU @ 2.30GHz), 
2-core, 2 threads/core, 132GB mem, GbE ethernet, 
950 GB disk
GPU: 4x NVIDIA Tesla P100-16GB-PCIe (total GPU 
DRAM across nodes 1.22 TB)
Software: Ubuntu 18.04, RAPIDS 0.5.1, Dask=1.1.1, 
Dask-Distributed=1.1.1, CuPY=5.2.0, CUDA 10.0.130

https://blog.dask.org/2019/01/03/dask-array-gpus-first-steps
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cuML
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        GPU Memory

Data Preparation VisualizationModel Training

Dask

Machine Learning
More models more problems

cuDF cuIO
Analytics

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer 
MxNet

Deep Learning

cuxfilter <> pyViz
Visualization
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Problem
Data sizes continue to grow

Histograms / Distributions

Dimension Reduction
Feature Selection

Remove Outliers

Sampling

Massive Dataset

Better to start with as much data as
possible and explore / preprocess to scale
to performance needs.

Iterate. Cross Validate & Grid Search.

Iterate some more.

Meet reasonable speed vs accuracy 
tradeoff

Hours? Days?

Time
Increase

s
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ML Technology Stack

Python

Cython

cuML Algorithms

cuML Prims

CUDA Libraries

CUDA

Dask cuML
Dask cuDF

cuDF
Numpy

Thrust
Cub

cuSolver
nvGraph
CUTLASS
cuSparse
cuRand
cuBlas
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Algorithms
GPU-accelerated Scikit-Learn

Classification / Regression

Inference

Clustering

Decomposition & Dimensionality Reduction

Time Series

Decision Trees / Random Forests
Linear Regression
Logistic Regression
K-Nearest Neighbors
Support Vector Machines

Random forest / GBDT inference

K-Means
DBSCAN
Spectral Clustering

Principal Components
Singular Value Decomposition
UMAP
Spectral Embedding
T-SNE

Holt-Winters
Seasonal ARIMA

Cross Validation

More to 
come!

Hyper-parameter Tuning Key:
● Preexisting
● NEW or enhanced for 

0.13
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RAPIDS matches common Python APIs

from sklearn.cluster import DBSCAN
dbscan = DBSCAN(eps = 0.3, min_samples = 5)

dbscan.fit(X)

y_hat = dbscan.predict(X)

Find Clusters

from sklearn.datasets import make_moons
import pandas

X, y = make_moons(n_samples=int(1e2), 
                  noise=0.05, random_state=0)

X = pandas.DataFrame({'fea%d'%i: X[:, i]
                     for i in range(X.shape[1])})

CPU-Based Clustering
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RAPIDS matches common Python APIs

from cuml            import DBSCAN
dbscan = DBSCAN(eps = 0.3, min_samples = 5)

dbscan.fit(X)

y_hat = dbscan.predict(X)

Find Clusters

from sklearn.datasets import make_moons
import cudf

X, y = make_moons(n_samples=int(1e2), 
                  noise=0.05, random_state=0)

X =   cudf.DataFrame({'fea%d'%i: X[:, i]
                     for i in range(X.shape[1])})

GPU-Accelerated Clustering
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Benchmarks: single-GPU cuML vs scikit-learn

1x V100 
   vs.

2x 20 core CPU
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cuML’s Forest Inference Library 
accelerates prediction (inference) for 
random forests and boosted decision 
trees:

● Works with existing saved models 
(XGBoost, LightGBM, scikit-learn RF 
cuML RF soon)

● Lightweight Python API
● Single V100 GPU can infer up to 34x 

faster than XGBoost dual-CPU node
● Over 100 million forest inferences 

per sec (with 1000 trees) on a DGX-1 
for large (sparse) or dense models

Forest Inference
Taking models from training to production

23x 36x 34x 23x
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● RAPIDS works closely with the 
XGBoost community to accelerate 
GBDTs on GPU

● The default rapids conda 
metapackage includes XGBoost

● XGBoost can seamlessly load data 
from cuDF dataframes and cuPy 
arrays

● Dask allows XGBoost to scale to 
arbitrary numbers of GPUs

● With the gpu_hist tree method, a 
single GPU can outpace 10s to 100s 
of CPUs

● Version 1.0 of XGBoost launched 
with the RAPIDS 0.13 stack.

+
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Road to 1.0 
March 2020 - RAPIDS 0.13
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Road to 1.0 
2020 - RAPIDS 1.0
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cuGraph
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        GPU Memory

Data Preparation VisualizationModel Training

Dask

Graph Analytics
More connections more insights

cuDF cuIO
Analytics

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer 
MxNet

Deep Learning

cuxfilter <> pyViz
Visualization



50

Goals and Benefits of cuGraph
Focus on Features and User Experience

• Property Graph support via DataFrames

Seamless Integration with cuDF and cuML

• Up to 500 million edges on a single 32GB GPU
• Multi-GPU support for scaling into the billions of 

edges

Breakthrough Performance 

• Python: Familiar NetworkX-like API
• C/C++: lower-level granular control for 

application developers

Multiple APIs

• Extensive collection of algorithm, primitive, 
and utility functions

Growing Functionality
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Algorithms
GPU-accelerated NetworkX

Community

Components

Link Analysis

Link Prediction

Traversal

Centrality

Spectral Clustering
Balanced-Cut
Modularity Maximization

Louvain
Ensemble Clustering for Graphs
Subgraph Extraction
KCore and KCore Number
Triangle Counting
K-Truss

Jaccard
Weighted Jaccard
Overlap Coefficient

Single Source Shortest Path (SSSP)
Breadth First Search (BFS)

Graph Classes

Multi-GPU

More to 
come!

Utilities

Weakly Connected Components
Strongly Connected Components

Katz
Betweenness Centrality

Structure

Renumbering
Auto-renumbering

Page Rank (Multi-GPU)
Personal Page Rank
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Multi-GPU PageRank Performance 

PageRank portion of the HiBench benchmark suite

HiBench Scale Vertices Edges CSV File 
(GB)

# of V100 
GPUs

# of CPU 
Threads

PageRank for
3 Iterations (secs)

Huge 5,000,000 198,000,000 3 1 1.1

BigData 50,000,000 1,980,000,000 34 3 5.1

BigData x2 100,000,000 4,000,000,000 69 6 9.0

BigData x4 200,000,000 8,000,000,000 146 12 18.2

BigData x8 400,000,000 16,000,000,000 300 16 31.8

BigData x8 400,000,000 16,000,000,000 300 800* 5760*

*BigData x8, 100x 8-vCPU nodes, Apache Spark GraphX ⇒ 96 mins!
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Community
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Ecosystem Partners
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Building on top of RAPIDS
A bigger, better, stronger ecosystem for all

Streamz

High-Performance 
Serverless event and 
data processing that 
utilizes RAPIDS for GPU 
Acceleration

Distributed stream 
processing using 
RAPIDS and Dask

GPU accelerated SQL 
engine built on top of 
RAPIDS
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Easy Installation
Interactive Installation Guide 
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Contribute Back
Issues, feature requests, PRs, Blogs, Tutorials, Videos, QA...bring your best!
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Getting Started
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RAPIDS Docs
Improved and easier to use!

https://docs.rapids.ai
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• https://ngc.nvidia.com/registry/nvidia-rapidsai
-rapidsai

• https://hub.docker.com/r/rapidsai/rapidsai/

• https://github.com/rapidsai

• https://anaconda.org/rapidsai/

RAPIDS
How do I get the software?

https://ngc.nvidia.com/registry/nvidia-rapidsai-rapidsai
https://ngc.nvidia.com/registry/nvidia-rapidsai-rapidsai
https://hub.docker.com/r/rapidsai/rapidsai/
https://github.com/rapidsai
https://anaconda.org/rapidsai/


THANK YOU

Nick Becker

nicholas@nvidia.com


